
Leon Towns-von Stauber, Occam's Razor

Seattle SAGE Group, February 2004

http://www.occam.com/osx/

Mac OS X
Security Framework

X

Opening Remarks...................................3
Overview..5
Daemons..8
Authorization Services..........................12
Common Data Security Architecture.....28
Keychains...33
Resources..44

Contents

X 3

I'm assuming basic familiarity with UNIX operating system design
Where I'm coming from:

UNIX user and some-time admin since 1990
Full-time UNIX admin since 1995
NeXTstep/OS X user and admin since 1991

This presentation primarily covers Mac OS X 10.3.2

Opening Remarks

X 4

This presentation Copyright © 2004 Leon Towns-von Stauber. All rights
reserved.
Trademark notices

Apple®, Mac OS®, Finder™, Panther™, and other terms are trademarks
of Apple Computer. See http://www.apple.com/legal/
appletmlist.html.
Other trademarks are the property of their respective owners.

Legal Notices

X 5

Provides infrastructure for security-related functionality to Mac OS X apps
Privileged access, encryption, certificate handling, password storage,
etc.

Examples
Login Window uses the framework to authenticate graphical logins
Installer and Software Update verify permission to install software
Finder permits superuser-level access
Disk Copy creates encrypted disk images
Apple Mail Server supports SSL connections
Keychain Access is entirely dependent on the Security framework

Overview

X 6

Security framework and associated components

Overview

X 7Overview
What is a Mac OS X framework?

Like a versioned shared library, encapsulated with resources in a
structured directory with a .framework extension (a "bundle")

Resources include headers, images, NIBs, property lists, etc.
[Show framework]

Panther (Mac OS X 10.3) splits Security framework into more pieces
/System/Library/Frameworks/Security.framework provides the
bulk of the API (in C)
/System/Library/Frameworks/SecurityFoundation.framework
provides an abstracted Objective-C API to Authorization Services
/System/Library/Frameworks/SecurityInterface.framework
and /System/Library/PrivateFrameworks/
SecurityHICocoa.framework provide Obj-C APIs for GUI elements

X 8Daemons

Introduction
Security Server
Security Agent

X 9

Every app linked to the Security framework maintains its own instance of
the framework in its address space

Think of the large box in the Security framework diagram as the
address space of a single process

To put distance between apps and sensitive data, external daemons
handle most passwords and private keys
Daemon executables located in /System/Library/CoreServices/

Daemons Introduction

X 10Daemons Security Server
The Security Server processes authorization requests, stores keys in
memory, performs cryptographic computations on keys, evaluates ACLs
in keychains, and manages keychain master keys

Executable is named SecurityServer
Started by SecurityServer startup item (in /System/Library/
StartupItems/)
Contacted via a privileged Mach IPC port, providing some assurance that
processes are talking to the right daemon when making sensitive
requests

X 11Daemons Security Agent
The Security Agent handles user interaction, acquiring user secrets
(passwords, biometric data, smart card keys, etc.), thus further separating
such data from the app requesting access

Executable is named SecurityAgent
When the Security Server requires user interaction, it launches a Security
Agent running under the user's UID

The Agent remains to handle further requests until the user logs out
Interacts with user via onscreen dialogs

Any Security framework requests are sent to the user at the graphical
console, even if the request came from another user's process

If no one is logged into the console, requests automatically fail
Darwin, lacking Aqua GUI, doesn't include the Security Agent, and
many Security framework capabilities don't work with Darwin

X 12Authorization Services

Introduction
Policy Database
Sequence of Events
AuthorizationExecuteWithPrivileges

Command-Line Tools

X 13

Authorization Services enables programs to determine whether a user
should be permitted to take certain actions

This is what give members of group admin much of their privileged
access
Kind of like sudo, but primarily intended for GUI functions

[Examples: System Preferences, Finder]
An action is associated with an authorization right, configured in a policy
database

Authorization Introduction

X 14

The policy database is an XML file, /etc/authorization
Fills a role analogous to sudoers, by defining authorization
requirements

Example entry in /etc/authorization, used by authopen:

Authorization Policy Database

<key>sys.openfile.</key>
<dict>

<key>class</key>
<string>user</string>
<key>group</key>
<string>admin</string>
<key>mechanisms</key>
<array>

<string>builtin:authenticate</string>
</array>
<key>shared</key>
<false/>
<key>timeout</key>
<integer>300</integer>

</dict>

X 15

After transformation into NeXT property list format with /usr/bin/pl <
/etc/authorization:

sys.openfile.: The name of the right
This is a wild card entry, indicated by the trailing dot

class: Requirement for successful authorization
The user class requires membership in a specified group

group: Users who authenticate as members of group admin satisfy the
requirements for this right

Authorization Policy Database

"sys.openfile." = {
class = user;
group = admin;
mechanisms = ("builtin:authenticate");
shared = 0;
timeout = 300;

};

X 16Authorization Policy Database
sys.openfile. (cont'd.)
mechanisms: Actions taken to authorize

In this case, user authentication is performed
shared: If true, other applications need not reauthorize (within the
timeout period)

In this case, authorization credentials are not shared with other apps
timeout: After the specified number of seconds since last acquisition
of the right, the credentials cached by the Security Server are dropped,
requiring reauthorization

A timeout of 0 means that reauthorization is never required

X 17

Another example, used by the Login Window application:

Requested by Login Window after bootup, causing the Security Server
to start a Security Agent (running as root) to display the login dialog

Upon login, this Agent is killed
Class of evaluate-mechanisms causes Security Server to execute each
of the routines listed for the mechanisms key
The authinternal mechanism creates a shared credential that negates
the need for reauthentication by applications after logging in

Authorization Policy Database

"system.login.console" = {
class = "evaluate-mechanisms";
mechanisms = (

"loginwindow_builtin:login",
authinternal,
"loginwindow_builtin:success",
"builtin:getuserinfo",
"builtin:sso"

);
};

X 18

Another example, used by PAM:

Requested by the pam_securityserver.so module, referenced in
several service config files in /etc/pam.d/

There is a system.login.pam right, which is unused (Huh?)
Thanks to this, successful password-based authentication through a
PAM-enabled service results in the creation of a shared credential
within the context of that service (SSH session, etc.)

Possible for remote logins due to push_hints_to_context, which
forwards auth info to the Security Server, bypassing the Security
Agent (which normally needs to put up a graphical dialog)
[Demonstrate using authorize and sudo]

Authorization Policy Database

"system.login.tty" = {
class = "evaluate-mechanisms";
mechanisms = ("push_hints_to_context",authinternal);

};

X 19

Another example:

The rule class uses an entry defined in the rules section of
/etc/authorization to determine how authorization is performed

Rules offer reusable collections of values

allow-root: If true, user logged in as root requires to authentication
session-owner: Right granted by successful authentication as user
whose GUI session is up on the system's console

Authorization Policy Database

"system.login.screensaver" = {
class = rule;
rule = "authenticate-session-owner-or-admin";

};

"authenticate-session-owner-or-admin" = {
"allow-root" = 0;
class = user;
group = admin;
mechanisms = ("builtin: authenticate");
"session-owner" = 1;
shared = 0;

};

X 20

Default entry applies when requested right doesn't match any other entry:

The default rule produces a shared credential if a person can
authenticate as an administrative user, which times out in 5 minutes:

Authorization Policy Database

"" = {
class = rule;
rule = default;

};

default = {
class = user;
group = admin;
mechanisms = ("builtin: authenticate");
shared = 1;
timeout = 300;

};

X 21Authorization Policy Database
Changes to /etc/authorization take effect on the fly, no signaling of
SecurityServer required (unlike syslogd, xinetd, etc.)
[Show /etc/authorization, processed through /usr/bin/pl]
Naming conventions

Most rights prefixed by system., indicating they're provided with the
OS
Entries by third parties are encouraged to follow a convention like that
used for Java classes: reversed DNS domain name associated with the
organization, followed by segments describing the right (e.g.,
com.occam.syslog.reload)

X 22

When an application requests authorization for an action (such as starting
a network service from System Preferences), here's what happens:

1) The application uses the Authorization Services API to contact the
Security Server, requesting a named right (like system.preferences)
2) The Security Server looks for the right in the policy database
(/etc/authorization), and determines the requirements
3) If the right requires authentication, and the Security Server doesn't
already possess cached credentials that can be shared with the
application, it triggers the Security Agent
4) The Security Agent prompts the user logged into the console, then
attempts to auth the user through the Directory Services framework
5) Directory Services reports success or failure, which is passed back
through the Security Agent to the Security Server
6) The Security Server returns result to the application

Authorization Sequence of Events

X 23Authorization AEWP
The AuthorizationExecuteWithPrivileges (AEWP) routine lets a
program specify an external command to be run with superuser privileges
Command invoked by /System/Library/CoreServices/
AuthorizationTrampoline, which is setuid root
Access to AEWP controlled by system.privilege.admin right in
/etc/authorization, and is thus limited to root and to those in the
admin group
Since granting an app full superuser privileges to run an arbitrary
command opens the possibility of a security hole, Apple warns against
use in its developer documentation
Used by some software, such as installers that set the setuid bit on
binaries that copy files to restricted areas

Be sure you trust software that asks you to authorize a privileged
action

X 24Authorization Command-Line Tools
/usr/libexec/authopen

Lets authorized users read and write files to which they wouldn't
normally have access
Example:
nidump group . | authopen -w /etc/group

Request made for sys.openfile./private/etc/group right
Note symlink resolution

If authorization successful, text from standard input replaces
contents of /etc/group
Man page contains more details

X 25Authorization Command-Line Tools
authorize

Available from http://www.occam.com/tools/
Takes name of right as argument, returns result of authorization
attempt
Not really intended for high-security uses

Opportunity for malicious interference in exchange of information
between authorize and tool invoking it

Better to include calls to Authorization Services in same code
performing privileged actions, rather than calling an external
authorization tool

sudo is more flexible for CLI uses than authorize
Mainly intended to demonstrate how /etc/authorization works

Could also be useful for casual authorization scenarios

X 26Authorization Command-Line Tools
authorize.c

#include <stdlib.h>
#include <Security/Authorization.h>

int main(int argc, char *argv[]) {
char *commandName = argv[0];
char *rightName;

if (argc == 2)
rightName = argv[1];

else {
fprintf(stderr, "usage: %s

authorization_right_name\n", commandName);
exit(EXIT_FAILURE);

}

OSStatus status;
AuthorizationItem right = { rightName, 0, NULL, 0 };
AuthorizationRights rightSet = { 1, &right };
AuthorizationFlags flags = kAuthorizationFlagDefaults |

kAuthorizationFlagExtendRights |
kAuthorizationFlagInteractionAllowed;

X 27Authorization Command-Line Tools
authorize.c (cont'd.)

Compile with cc -framework Security -o authorize
authorize.c

status = AuthorizationCreate(&rightSet,
kAuthorizationEmptyEnvironment, flags, NULL);

if (status == errAuthorizationSuccess) {
fprintf(stdout, "success\n");
exit(EXIT_SUCCESS);

} else {
fprintf(stdout, "failure\n");
exit(EXIT_FAILURE);

}
}

X 28Common Data Security Architecture

Introduction
Modules
System Services
STOS Projects

X 29

The Common Data Security Architecture (CDSA) is a standard originally
developed by Intel, and now promoted by The Open Group
Apple has implemented it as part of the Mac OS X Security framework

Nearly all of it part of open-source Darwin project
At the base are plug-in modules of various types
Access to module functionality is through the Common Security Services
Manager (CSSM) API, the centerpiece of the CDSA

CDSA Introduction

X 30

CSP (Cryptographic Service Provider): Random number generation,
encryption/decryption, key generation, hashes, digital signatures

Symmetric encryption algorithms: ASC (Apple Secure Compression),
RC2, RC4, RC5, DES, 3DES, AES/Rijndael
Asymmetric encryption algorithms: FEE (NeXT's Fast Elliptic Encryption),
RSA, DSA, Diffie-Hellman
Message digesting algorithms: MD2, MD5, SHA-1
Pseudo-randum number generation algorithm: Yarrow

DL (Data Library): File-based storage of certificates, keys, etc.
CSP/DL: Manages keychains
X509CL (Certificate Library): Manages X.509 certificates in memory
X509TP (Trust Policy): Determines validity of X.509 certs

CDSA Modules

X 31

Atop the CSSM, Apple provides higher-level APIs as part of the Security
framework

Secure Transport: Implements SSL/TLS
Offers cleaner integration and abstraction for developers,, and
possibly greater performance, but OpenSSL is more familiar and
cross-platform

Certificate, Key, and Trust Services: Manages certs and public keys
Keychain Services: Programmatic interface to keychains

CDSA System Services

X 32

The Secure Trusted Operating System (STOS) Consortium (http://
www.stosdarwin.org/) brings together representatives from the U.S.
federal government, academia, and private industry to work on advanced
security capabilities using the Darwin kernel as a starting point
Several projects involving Apple's CDSA implementation:

Apache SSL module using CDSA instead of OpenSSL
PGP implementation using CDSA
OpenSSH on CDSA

CDSA STOS Projects

X 33Keychains

Introduction
Keychain Contents
Sequence of Events
Keychain Files
Tools

X 34

A keychain is a file containing keys, certificates, passwords, and other
secured data
Contents are encrypted, protected by an access password
Convenience: a single password unlocks access to a multitude of
passwords used for web sites, mail servers, file shares, etc.

Makes it practical to use unique, well-chosen passwords for each

Keychains Introduction

X 35

Keychains contain three kinds of objects: keys, access control lists
(ACLs), and other items

Storage and access of objects in keychains is done by the AppleCSPDL
module, via Keychain Services and the CSSM

Each key in the keychain has an ACL, processed by the Security Server,
which determines which applications can access it, and how

An app is identified by a hash of the invariant parts of the app binary
Thus, application access to keys must be re-established after a
software update
Provides reasonable assurance that app is the same as when the user
gave it permission to access a key

Only way to modify ACLs is by user direction through a Security
Agent, and the Security Server will only accept ACL changes from
an Agent that it has started

Keychains Contents

X 36

Keychain items you see in Keychain Access aren't actually keys
Each item (password, secure note, etc.) is stored in the keychain, and
encrypted with its own key, which is also stored in the keychain
ACLs are applied to per-item encryption keys, but they're made to look
as if they're properties of the items the keys protect

A master signing key is used to sign the per-item keys and their ACLs
Per-item keys and the master signing key are themselves encrypted with
a master key

ACLs can't be encrypted, since they're needed to determine whether
access to encrypted keys should be permitted

The master key is encrypted with the keychain password
The master key and master signing key are also stored in the keychain,
making the keychain file completely portable, requiring only the
password to unlock its contents

Keychains Contents

X 37

Keychain items you see in Keychain Access aren't actually keys
Each item (password, secure note, etc.) is stored in the keychain, and
encrypted with its own key, which is also stored in the keychain
ACLs are applied to per-item encryption keys, but they're made to look
as if they're properties of the items the keys protect

A master signing key is used to sign the per-item keys and their ACLs
Per-item keys and the master signing key are themselves encrypted with
a master key
The master key is encrypted with the keychain password
The master key and master signing key are also stored in the keychain,
making the keychain file completely portable, requiring only the
password to unlock its contents

Keychains Contents

X 38

Here's what happens when an app desires access to a keychain item:
1) App makes a request with Keychain Services, through the CSSM,
which calls on the AppleCSPDL
2) If the default keychain is locked, AppleCSPDL retrieves the encrypted
master key and hands it to the Security Server
3) The Security Server has a Security Agent prompt the user for the
keychain password, which is passed back to the Security Server
4) The Security Server uses the password to decrypt the master key,
then caches it in memory (A keychain is unlocked when the Security
Server has its decrypted master key cached in memory.)
5) Once the keychain is unlocked, the AppleCSPDL retrieves the desired
item, the item's encryption key, and the key's ACL, handing them to the
Security Server

Keychains Sequence of Events

X 39

Accessing a keychain item (cont'd):
6) The Security Server verifies the signature on the key and ACL with
the master signing key
7) If the signature checks out, the Security Server processes the ACL,
resulting in denial, permission, or another prompt through the Security
Agent
8) If access is permitted, the Security Server decrypts the keychain item
and hands it to the AppleCSPDL, which passes it back up the software
stack to the application

Note that the application process never sees the user's keychain
password, nor any of the decrypted keys in the keychain

Keychains Sequence of Events

X 40

A keychain is created as ~/Library/Keychains/login.keychain upon
first login

Keychain password same as login password, synced when changing
login password through GUI
If keychain and login passwords are the same, the keychain is
automatically unlocked upon login

The login keychain is also the initial default keychain, meaning that
new items are added to it, and that it's the default argument for many of
the security utility's commands
On first boot, the SecurityServer startup item uses systemkeychain to
create /Library/Keychains/System.keychain

Also creates /var/db/SystemKey, which presumably contains a
randomly generated keychain password
Used by system processes running as root (daemons, boot processes)

Keychains Files

X 41

Keychain Access is the primary UI for keychain management
In the Settings dialog (under the Edit menu), you can set the keychain
to lock after some idle timeout, and/or when the machine sleeps

"Locking" means to have the Security Server throw away its cached
copy of the keychain's decrypted master key
You should consider lowering the idle timeout

Keychain First Aid (under Window menu) meant to fix certain problems
that can corrupt a keychain, but with certain setups in the past it has
caused more damage than it repairs

Run it in Verify mode, and try to fix things manually
Password Assistant (under Edit->Change Password...->Details->i) can
help choose strong password

Keychain Status menu bar item provides convenient access to functions

Keychains Tools

X 42

Keychain Access

Keychains Tools

X 43

The security command can help manage keychains from the CLI
security list-keychains

security lock-keychain keychain

security show-keychain-info keychain

security dump-keychain keychain

See man page for more

Keychains Tools

X 44

Web Sites
Mailing Lists
Books

Resources

X 45

Security Framework developer documentation
http://developer.apple.com/techpubs/macosx/

CoreTechnologies/coretechnologies.html

Apple CDSA site
http://developer.apple.com/darwin/projects/cdsa/

Intel CDSA site
http://www.intel.com/ial/security/

The Open Group CDSA site
http://www.opengroup.org/security/l2-cdsa.htm

CDSA specification
http://www.opengroup.org/onlinepubs/009608599/

Resources Web Sites

X 46

apple-cdsa (Apple)
http://lists.apple.com/mailman/listinfo/apple-cdsa/

Very low traffic, mostly developers
MacOSX-admin (Omni Group)
http://www.omnigroup.com/developer/mailinglists/macosx-

admin/

Moderate to heavy traffic

Resources Mailing Lists

X 47

Mac OS X Panther in a Nutshell
Chuck Toporek, Chris Stone

Mac OS X Panther for Unix Geeks
Brian Jepson, Ernest E. Rothman

Both contain references for Security framework-related CLI commands
(written by yours truly)

Resources Books

